SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1 Product identifier
Product Name: Light Catalytic Reformed Mogas / Naphtha
Product Description: V4050-REFORMATE LIGHT CATALYTIC-Light Catalytic Reformed Mogas / Naphtha
Trade Name: REFORMATE LIGHT CATALYTIC
Product code: REFORLIG, V4050
CAS No.: 68955-35-1
EC No.: 273-271-8
REACH Registration No.: -

1.2 Relevant identified uses of the substance or mixture and uses advised against

<table>
<thead>
<tr>
<th>No.</th>
<th>Exposure Scenario</th>
<th>Page:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distribution of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Formulation and (re)packing of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Industrial</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Professional</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Consumer</td>
<td>24</td>
</tr>
</tbody>
</table>

Uses Advised Against
Anything other than the above.

1.3 Details of the supplier of the safety data sheet
Company Identification
Vitol SA
Place des Bergues 3
P.O. Box 2056
1211 Geneva 1
Switzerland

Telephone: +31 10 498 7200
Fax: +31 10 452 9545
E-Mail (competent person): xreach@vitol.com

1.4 Emergency telephone number
Emergency Phone No.: +44 (0) 1235 239 670, 24/7
Languages spoken: All official European languages.

SECTION 2: HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

2.1.1 Regulation (EC) No. 1272/2008 (CLP)
Flam. Liq. 1; H224
Asp. Tox. 1; H304
Skin Irrit. 2; H315
Muta. 1B; H340
Carc. 1B; H350
Repr. 2; H361fd
STOT SE 3; H336 (Central nervous system, Inhalation)
Aquatic Chronic 2; H411

2.2 Label elements
Product Description: According to Regulation (EC) No. 1272/2008 (CLP)
V4050-REFORMATE LIGHT CATALYTIC-Light Catalytic Reformed Mogas / Naphtha
Hazard Pictogram(s)

Signal Word(s)
Danger

Hazard Statement(s)
H224: Extremely flammable liquid and vapour.
H304: May be fatal if swallowed and enters airways.
H315: Causes skin irritation.
H340: May cause genetic defects.
H350: May cause cancer.
H361kd: Suspected of damaging fertility. Suspected of damaging the unborn child.
H336: May cause drowsiness or dizziness. (Central nervous system, Inhalation)
H411: Toxic to aquatic life with long lasting effects.

Precautionary Statement(s)
P201: Obtain special instructions before use.
P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P273: Avoid release to the environment.
P280: Wear protective gloves/protective clothing/eye protection/face protection.
P301+P310: IF SWALLOWED: Immediately call a POISON CENTER/doctor.
P331: Do NOT induce vomiting.
P403+P233: Store in a well-ventilated place. Keep container tightly closed.

2.3 Other hazards
May form explosive mixture with air. The vapour is heavier than air; beware of pits and confined spaces. May cause irritation to eyes and air passages. Product may release Hydrogen Sulphide: A specific assessment of inhalation risks from the presence of hydrogen sulphide in tank headspaces, confined spaces, product residue, tank waste and waste water, and unintentional releases should be made to help determine controls appropriate to local circumstances.

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>CAS No.</th>
<th>EC No.</th>
<th>%W/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphtha (petroleum), catalytic reformed</td>
<td>68955-35-1</td>
<td>273-271-8</td>
<td>100</td>
</tr>
</tbody>
</table>

SECTION 4: FIRST AID MEASURES

4.1 Description of first aid measures

Self-protection of the first aider

Eliminate sources of ignition. If it is suspected that fumes are still present, the responder should wear an appropriate mask or self-contained breathing apparatus. Drench contaminated clothing with water before removing to avoid risk of sparks from static electricity. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Avoid all contact. Do not ingest. If swallowed then seek immediate medical assistance.

H2S Warning:

Hydrogen sulphide (H2S) can accumulate in the headspace of storage tanks and reach potentially hazardous concentrations.

If there is any suspicion of inhalation: A self contained breathing apparatus should be worn. Remove to fresh air immediately.

Inhalation

IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. Maintain an open airway. Loosen tight
clothing such as a collar, tie, belt or waistband. Get medical advice/attention if you feel unwell.

Skin Contact
- **IF ON SKIN (or hair):** Remove contaminated clothing immediately and wash affected skin with plenty of water or soap and water. If irritation (redness, rash, blistering) develops, get medical attention.

Eye Contact
- **IF IN EYES:** Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists, get medical advice/attention.

Ingestion
- **IF SWALLOWED:** Do not induce vomiting because of risk of aspiration into the lungs. If vomiting occurs spontaneously, keep head below hips to prevent aspiration into the lungs. If unconscious, place in recovery position and get medical attention immediately. Do not give anything by mouth to an unconscious person. Get medical attention immediately. Do not wait for symptoms to appear.

Most important symptoms and effects, both acute and delayed

Inhalation: May cause drowsiness or dizziness. Headache, nausea and vomiting.

Skin Contact: Causes skin irritation.

Eye Contact: Causes serious eye irritation.

Ingestion: Aspiration into the lungs may cause chemical pneumonitis, which can be fatal. Ingestion may cause irritation of the gastrointestinal tract. Nausea, Vomiting and Diarrhoea.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Notes to a physician:

IF INHALED:
- Place in recovery position and get medical attention immediately. Administer oxygen if available and artificial respiration if necessary.

SECTION 5: FIREFIGHTING MEASURES

5.1 **Extinguishing media**

Suitable Extinguishing media

- Extinguish with sand or dry chemical. Foam, Carbon dioxide, Water fog or dry powder

Unsuitable extinguishing media

- Do not use water jet. Direct water jet may spread the fire.

5.2 **Special hazards arising from the substance or mixture**

- Extremely flammable liquid and vapour. Will float and can be reignited on surface water. Decomposes in a fire giving off toxic fumes: A mixture of solid and liquid particulates and gases including unidentified organic and inorganic compounds. May form explosive mixture with air. Prevent liquid entering sewers, basements and any watercourses. Vapours are heavier than air and may travel considerable distances to a source of ignition and flashback. If sulphur compounds are present in appreciable amounts, combustion products may include also H2S and SOx (sulfur oxides) or sulfuric acid

5.3 **Advice for fire-fighters**

- Fight fire with normal precautions from a reasonable distance. Fire fighters should wear complete protective clothing including self-contained breathing apparatus. Keep containers cool by spraying with water if exposed to fire. Avoid release to the environment. Dike fire control water for later disposal.

SECTION 6: ACCIDENTAL RELEASE MEASURES

6.1 **Personal precautions, protective equipment and emergency procedures**

Caution - spillages may be slippery. Ensure operatives are trained to minimise exposures. Ensure suitable personal protection during removal of spillages. Eliminate sources of ignition. Shut off leaks if without risk. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Avoid all contact with substance. Ensure adequate ventilation. Do not breathe vapour. Do not ingest. If swallowed then seek immediate medical assistance. All official European languages. Do not use sparking tools. Use non-sparking ventilation systems, approved explosion-proof equipment, and intrinsically safe electrical systems.

H2S Warning:

Product may release Hydrogen Sulphide. Exposure controls - These controls
may include: Segregation of areas, Access only to authorised persons, Permit to work systems, Confined space working procedures, Area H2S alarms, Personal H2S alarms, Personal escape sets, H2S awareness training. Please see section 8 for appropriate personal protection equipment.

Small spillages:
Wear flame-resistant antistatic protective clothing.

Large spillages:
Evacuate the area and keep personnel upwind. Drench contaminated clothing with water before removing to avoid risk of sparks from static electricity. Avoid all contact. Wear chemical protection suit and breathing apparatus. See Also Section: 8.

6.2 Environmental precautions
Avoid release to the environment. Do not allow to enter drains, sewers or watercourses. Spillages or uncontrolled discharges into watercourses must be alerted to the Environment Agency or other appropriate regulatory body. If necessary: Dike area to contain the spill and prevent releases to sewers, drains, or other waterways.

6.3 Methods and material for containment and cleaning up
Provided it is safe to do so, isolate the source of the leak. Use non-sparking equipment when picking up flammable spill. The vapour is heavier than air; beware of pits and confined spaces. Ensure that the equipment is adequately grounded. Allow small spillages to evaporate provided there is adequate ventilation. Wear flame-resistant antistatic protective clothing. Wear chemical protection suit and breathing apparatus.

Spillages onto land:
In case of soil contamination, remove contaminated soil and treat in accordance with local regulations. Adsorb spillages onto sand, earth or any suitable adsorbent material. Transfer to a lidded container for disposal or recovery. Dispose of this material and its container as hazardous waste. Small spillages: Allow small spillages to evaporate provided there is adequate ventilation. Wear flame-resistant antistatic protective clothing. Large spillages: Cover spillage with foam to reduce evaporation. Do not use water jet.

Spillages on water or at sea:
Collect as much as possible in clean container for reuse or disposal. Small spillages: Contain product with floating barriers or other equipment. Collect spilled product by absorbing with specific floating absorbents. Large spillages: Open waters should be contained with floating barriers or other mechanical means and recovered, only if this is strictly necessary and if fire/explosion risks can be adequately prevented. Otherwise control the spreading of the spillage, and let the substance evaporate naturally.

6.4 Reference to other sections
See Section: 8,13

SECTION 7: HANDLING AND STORAGE

7.1 Precautions for safe handling
Obtain special instructions before use. Keep away from sources of ignition - No smoking. Use only outdoors or in a well-ventilated area. Prevent vapour build up by providing adequate ventilation during and after use. May form explosive mixtures with air. Take action to prevent static discharges. Use non-sparking tools. All parts of the plant and equipment should be electrically bonded together and connected to earth. Electrical continuity should be checked at regular intervals. Antistatic clothing and footwear should be used. The vapour is heavier than air; beware of pits and confined spaces. Avoid all contact with substance. Do not ingest. If swallowed then seek immediate medical assistance. Do not breathe vapour. See Section: 8. Keep good industrial hygiene. Wash hands thoroughly after handling. Contaminated clothing should be thoroughly cleaned.

H2S Warning:
Product may release Hydrogen Sulphide: A specific assessment of inhalation risks from the presence of hydrogen sulphide in tank headspaces, confined spaces, product residue, tank waste and waste water, and unintentional releases should be made to help determine controls appropriate to local circumstances. These controls may include: Segregation of areas, Access only to authorised persons, Permit to work systems, Confined space working procedures, Area H2S alarms, Personal H2S alarms, Personal escape sets, H2S awareness training.

7.2 Conditions for safe storage, including any incompatibilities
Light hydrocarbon vapours can build up in the headspace of containers. These can cause flammability / explosion hazards. Bund storage facilities to prevent soil and water pollution in the event of spillage. Keep only in original packaging.
Keep containers properly sealed when not in use. Protect from sunlight. Containers of this material may be hazardous when empty since they retain product residue. Empty container may contain product residue which may result in flammable or explosive vapours inside the container.

Storage temperature
Stable at ambient temperatures.

Storage measures
Suitable containers: Stainless steel, Mild steel
Do not store in: Synthetic materials

Incompatible materials
Keep away from oxidising agents.

7.3 Specific end use(s)
See Section: 1.2 and/or Exposure Scenario.

SECTION 8: EXPOSURE CONTROLS/PERSOAL PROTECTION

8.1 Control parameters
8.1.1 Occupational Exposure Limits
No Occupational Exposure Limit assigned. Users are advised to consider national Occupational Exposure Limits or other equivalent values.

8.1.2 Biological limit value
Not established.

8.1.3 PNECs and DNELs
PNEC: Not established. Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRISK to calculate the environmental toxicity (HCS) of each group of components in the substance. These are used to estimate the environmental risk for the substance. Therefore individual environmental compartments PNECs are not available for this product.

<table>
<thead>
<tr>
<th>Naphtha (petroleum), catalytic reformed</th>
<th>Oral</th>
<th>Inhalation</th>
<th>Dermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived No Effect Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker - Long Term - Systemic effects</td>
<td>-</td>
<td>1300 mg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Worker - Long Term - Local effects</td>
<td>-</td>
<td>840 mg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Worker - Acute - Local effects</td>
<td>-</td>
<td>1100 mg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Consumer - Long Term - Systemic effects</td>
<td>-</td>
<td>1200 mg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Consumer - Long Term - Local effects</td>
<td>-</td>
<td>180 mg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Consumer - Acute - Local effects</td>
<td>-</td>
<td>640 mg/m³</td>
<td>-</td>
</tr>
</tbody>
</table>

8.2 Exposure controls
8.2.1 Appropriate engineering controls
Provide adequate ventilation, including appropriate local extraction if dusts, fumes or vapours are likely to be evolved. Store in a cool/low-temperature, well-ventilated (dry) place away from heat and ignition sources. Guarantee that the eye flushing systems and safety showers are located close to the working place.

8.2.2 Individual protection measures, such as personal protective equipment (PPE)
Protective clothing should be selected specifically for the working place, depending on concentration and quantity of the hazardous substances handled. The resistance of the protective clothing to chemicals should be ascertained with the respective supplier.

Fuels are typically used, transferred and transported in closed systems. If exposure is likely (i.e. during sampling) the following advice may be appropriate.
Keep good industrial hygiene. Always wash hands before smoking, eating and drinking. Do not eat, drink or smoke at the work place.

Refer to annexes for exposure scenarios detailing use specific exposure controls

Eye/face protection
Use eye protection according to EN 166, designed to protect against liquid splashes.

Skin protection

Hand protection: Wear impervious gloves (EN374). Gloves should be changed regularly to avoid permeation problems. Breakthrough time of the glove material: refer to the information provided by the gloves' producer. Recommended: Nitrile rubber.
Body protection: Wear anti-static clothing and shoes.
small scale: Wear suitable coveralls to prevent exposure to the skin.
large scale: Chemical protection suit.

Respiratory protection
When the product is heated / In case of inadequate ventilation wear respiratory protection. The use of a high efficiency filter (EN143) is recommended. Filter type A1

Closed system(s): Not normally required.

Thermal hazards
Not applicable.

8.2.3 Environmental Exposure Controls
Avoid release to the environment.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties
Appearance: Colourless liquid
Odour: Hydrocarbon
Odour threshold: Not established
pH: Not established
Melting point/freezing point: < - 60 °C
Initial boiling point and boiling range: < 35 °C
Flash point: < 0 °C
Evaporation rate: Not established
Flammability (solid, gas): Not applicable - Liquid
Upper/lower flammability or explosive limits:
Flammable Limits (Lower) (%v/v): 1
Flammable Limits (Upper) (%v/v): 10
Vapour pressure: 4 - 240 kPa @ 37.8°C
Vapour density: > 2
Relative density: 0.62 – 0.88 g/cm³ @ 15 °C
Solubility: Immiscible with water.
Partition coefficient: n-octanol/water: Not applicable. Substance is complex UVCB.
Auto-ignition temperature: > 220 °C
Decomposition Temperature: Not established
Viscosity: 1 mm²/s @ 20 °C
Explosive properties: Not explosive. (Vapour may create explosive atmosphere.)
Oxidising properties: Not oxidising.

9.2 Other information
None known.

SECTION 10: STABILITY AND REACTIVITY

10.1 Reactivity
Stable under normal conditions. Reacts with - Strong oxidising agents
10.2 Chemical stability
Stable under normal conditions. Hazardous polymerisation will not occur. Product may release Hydrogen Sulphide.
10.3 Possibility of hazardous reactions
Extremely flammable liquid and vapour. May form explosive mixture with air. Vapours are heavier than air and may travel considerable distances to a source of ignition and flashback. Product may release Hydrogen Sulphide.
10.4 Conditions to avoid
Elevated temperature. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep away from direct sunlight.
10.5 Incompatible materials
Keep away from oxidising agents. Strong Acids and Alkalis.
10.6 Hazardous decomposition product(s)
A mixture of solid and liquid particulates and gases including unidentified organic and inorganic compounds. Decomposes in a fire giving off toxic fumes: COx, H2S, SOx,

SECTION 11: TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects
All test data taken from existing ECHA registrations for the substances mentioned.
Acute toxicity - Ingestion
Based upon the available data, the classification criteria are not met.
LD50 > 5000 mg/kg bw/day (rat) (OECD 401)

Acute toxicity - Inhalation
Based upon the available data, the classification criteria are not met.
LC50 Vapour > 5600 mg/m³ Air (rat) (OECD 403)

Acute toxicity - Skin Contact
Based upon the available data, the classification criteria are not met.
LD50 > 2000 mg/kg bw/day (rabbit) (OECD 402)

Skin corrosion/irritation
Irritating to skin. (rabbit) (OECD 404)

Serious eye damage/irritation
Based upon the available data, the classification criteria are not met.
Not irritating to eyes (rabbit) (OECD 405)

Respiratory or skin sensitization
Based upon the available data, the classification criteria are not met.
Sensitisation (guinea pig) - Negative (OECD 406)

Germ cell mutagenicity
Muta. 1B; May cause genetic defects. Harmonised Classification.
ECHA Registration Endpoint summary: According to EU CLP Classification (EC no. 1272/2008), there is a regulatory requirement to classify Gasoline and naphtha streams as hazardous for this endpoint when they contain >0.1% benzene

Carcinogenicity
Carc. 1B; May cause cancer. Harmonised Classification.
ECHA Registration Endpoint summary: According to EU CLP Classification (EC no. 1272/2008), there is a regulatory requirement to classify Gasoline and naphtha streams as hazardous for this endpoint when they contain >0.1% benzene

Reproductive toxicity
Repr. 2; Suspected of damaging fertility or the unborn child.
ECHA Registration Endpoint summary: According to EU CLP Classification (EC no. 1272/2008), there is a regulatory requirement to classify Gasoline and naphtha streams as hazardous for this endpoint when they contain >0.1% Toluene and/or n-hexane

STOT - single exposure
STOT SE 3; May cause drowsiness or dizziness.
Weight of evidence approach

STOT - repeated exposure
Based upon the available data, the classification criteria are not met.

Oral: No adverse effect observed (rat) (Halder CA, et al. (1985))
Inhalation: No adverse effect observed (rat) (OECD 453)
Dermal: Chronic - Systemic effects NOAEC 1402 mg/m³

Aspiration hazard
Asp. Tox. 1; May be fatal if swallowed and enters airways. Harmonised Classification.
Viscosity: 1 mm²/s @ 20 °C

11.2 Other information

SECTION 12: ECOLOGICAL INFORMATION

12.1 Toxicity
Aquatic Chronic 2; Toxic to aquatic life with long lasting effects.
LL50 (Fish) (96hr) 10 mg/l (OECD 203)

According to the EU CLP Regulation (EC No. 1272/2008) criteria, substances in the low boiling point naphtha category are classified as Chronic Category 2 (H411) for the environment based on acute invertebrate and alga toxicity.

12.2 Persistence and degradability
Readily biodegradable. (OECD 301F)

12.3 Bioaccumulative potential
Substance is complex UVCB. The BCF (fish) of this substance components is well below the criteria for bioaccumulation. Therefore, this substance is not considered as bioaccumulative substance. (ECHA registration dossier: PBT assessment 2)

12.4 Mobility in soil
The product is predicted to have low mobility in soil. Immiscible with water.

12.5 Results of PBT and vPvB assessment
Substance is complex UVCB. This substance does not contain PBT constituents included in the SVHC candidate list at concentrations above 0.1%.
None known.

12.6 Other adverse effects
None known.

SECTION 13: DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods
Dispose of this material and its container as hazardous waste. Do not empty into drains, dispose of this material and its container at hazardous or special waste
collection point. Disposal should be in accordance with local, state or national legislation. Containers of this material may be hazardous when empty since they retain product residue. Containers must not be punctured or destroyed by burning, even when empty. Allocation of a waste code number, according to the European Waste Catalogue, should be carried out in agreement with the regional waste disposal company. Waste code: 13 07 01

SECTION 14: TRANSPORT INFORMATION

14.1 UN number
ADR/RID UN 1268 IMDG/ADN UN 1268
14.2 Proper Shipping Name PETROLEUM DISTILLATES N.O.S. PETROLEUM DISTILLATES N.O.S.
14.3 Transport hazard class(es) 3 3+(N2, CMR, F)
14.4 Packing group I I
14.5 Environmental hazards MILEUGEVAARLIJK / ENVIRONMENTALLY DANGEREUX POUR L’ENVIRONNEMENT
14.6 Special precautions for user Vapour may create explosive atmosphere. The vapour is heavier than air; beware of pits and confined spaces.
14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code This product is being carried under the scope of MARPOL Annex 1. Special Precautions: Refer to Chapter 7 ‘Handling and Storage’ for special precautions which a user needs to be aware of, or needs to comply with, in connection with transport.
14.8 Additional Information ADR HIN: 33 EmS: F-E, S-E
Tunnel Restriction Code: 3 (D/E) Limited Quantity: 500 ml
Limited Quantity: 500 ml

SECTION 15: REGULATORY INFORMATION

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture
15.1.1 EU regulations Seveso
Annex XVII (Restrictions)
In accordance with REACH Annex XVII entry 30 (c) this substance is exempt from Entry 28 and 29 of REACH Annex XVII as it is to be sold as a fuel in a closed system.

15.1.2 National regulations Germany Wassergefährdungsklasse (Germany). WGK number: 3

15.2 Chemical Safety Assessment
A REACH chemical safety assessment (CSA) has been carried out. Refer to annexes for exposure scenarios detailing use specific exposure controls.

SECTION 16: OTHER INFORMATION

Sections indicated with the following have been revised
Header and Section 1.3

Updated version and date. New SDS Regulation 2015/830 format, all sections have been updated to include new information. Please review SDS with care.

References:
Existing ECHA registration(s) for Naphtha (petroleum), catalytic reformed (CAS No. 68955-35-1) and Chemical Safety Report.

This Safety Data Sheet was prepared in accordance with EC Regulation (EC) 1907/2006 (REACH), 1272/2008 (CLP) & 2015/830.

Literature References:

LEGEND
LTLE Long Term Exposure Limit
STEL Short Term Exposure Limit
DNEL Derived No Effect Level
PNEC Predicted No Effect Concentration
PBT Persistent, Bioaccumulative and Toxic
vPvB very Persistent and very Bioaccumulative
OECD Organisation for Economic Cooperation and Development
ES Exposure Scenario
NOAEC no observed adverse effect concentration
NOAEL No Observed Adverse Effect Level

Training advice: Consideration should be given to the work procedures involved and the potential extent of exposure as they may determine whether a higher level of protection is required.

Disclaimers
Information contained in this publication or as otherwise supplied to Users is believed to be accurate and is given in good faith, but it is for the Users to satisfy themselves of the suitability of the product for their own particular purpose. Vitol SA gives no warranty as to the fitness of the product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. Vitol SA accepts no liability for loss or damage (other than that arising from death or personal injury caused by defective product, if proved), resulting from reliance on this information. Freedom under Patents, Copyright and Designs cannot be assumed.

Annex to the extended Safety Data Sheet (eSDS)
See below -
Naphtha (petroleum), catalytic reformed (0 -1% benzene content)

CAS Number 68955-35-1
EC Number 273-271-8

Summary of Parameters

<table>
<thead>
<tr>
<th>Physical Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour pressure (Pa)</td>
<td>4 – 240 @ 37.8 °C (Value used for exposure assessment = 340)</td>
</tr>
<tr>
<td>Partition Coefficient (log K\textsubscript{OW})</td>
<td>2.00 - 20.43</td>
</tr>
<tr>
<td>Aqueous solubility (mg L-1)</td>
<td>1.6E+03 - 5.1E-18 (Value used for exposure assessment = 2.0E+02)</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>Not defined</td>
</tr>
</tbody>
</table>

Human health Parameter (DNELs)

<table>
<thead>
<tr>
<th>Worker</th>
<th>Short term</th>
<th>Inhalation (mg/m3)</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dermal (mg/kg bw/day)</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Long Term</td>
<td>Inhalation (mg/m3)</td>
<td>3.2 (= 1 ppm)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dermal (mg/kg bw/day)</td>
<td>0.234*</td>
<td></td>
</tr>
</tbody>
</table>

Consumer	Inhalation (mg/m3)	0.0032 (=1 ppb)* (0.93 mg/kg bw/day)	
	Dermal (mg/kg bw/day)	0.234*	
	Oral (mg/kg1 bw/day-1)	8.8	

Environmental Parameter (PNECs)

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the environmental toxicity (HCS) of each group of components in the substance. These are used to estimate the environmental risk for the substance. Therefore individual environmental compartments PNECs are not available for this product.

* Concentration: benzene (Worst case assumption. Contains benzene. @1%).
Table of Contents

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Scenario 1</td>
<td>Distribution of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)</td>
<td>12</td>
</tr>
<tr>
<td>Exposure Scenario 2</td>
<td>Formulation and (re)packing of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)</td>
<td>15</td>
</tr>
<tr>
<td>Exposure Scenario 3</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Industrial</td>
<td>18</td>
</tr>
<tr>
<td>Exposure Scenario 4</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Professional</td>
<td>21</td>
</tr>
<tr>
<td>Exposure Scenario 5</td>
<td>Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Consumer</td>
<td>24</td>
</tr>
</tbody>
</table>

Contributing Scenarios

Workers

- **PROC1** Chemical production or refinery in closed process without likelihood of exposure or processes with equivalent containment conditions.
- **PROC2** Chemical production or refinery in closed continuous process with occasional controlled exposure or processes with equivalent containment conditions.
- **PROC2 (Storage)** Use in closed, continuous process with occasional controlled exposure. Bulk product storage.
- **PROC3** Manufacture or formulation in the chemical industry in closed batch processes with occasional controlled exposure or processes with equivalent containment condition.
- **PROC3 (Sampling)** Use in closed, continuous process with occasional exposure. Sample collection.
- **PROC8a (Maintenance)** Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities.
- **PROC8b (Bulk)** Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities. Bulk transfer in a closed system.
- **PROC8b (Drum)** Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities. Drum or batch transfers.
- **PROC8b (Refueling)** Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities. Refueling vehicles, light aircraft or marine craft.
- **PROC8b (aircraft)** Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities. Refueling aircraft.
- **PROC15** Use as laboratory reagent.
- **PROC16** Using material as fuel sources, limited exposure to unburned product to be expected.
- **PROC16 (Additive)** Using material as fuel sources, limited exposure to unburned product to be expected. Use as a fuel additive.

Environment

- **ERC1** Manufacture of substance.
- **ERC2** Formulation of preparations.
- **ERC3** Formulation in materials.
- **ERC4** Industrial use of processing aids in processes and products, not becoming part of articles.
- **ERC5** Industrial use resulting in inclusion into or onto a matrix.
- **ERC6a** Industrial use resulting in manufacture of another substance (use of intermediates).
- **ERC6b** Industrial use of reactive processing aids.
- **ERC6c** Industrial use of monomers for manufacture of thermoplastics.
- **ERC6d** Industrial use of process regulators for polymerisation processes in production of resins, rubbers, polymers.
- **ERC7** Industrial use of substances in closed systems.
- **ERC9a** Wide dispersive indoor use of substances in closed systems.
- **ERC9b** Wide dispersive outdoor use of substances in closed systems.

Consumer

- **PC13** Fuels.
 - (Automotive refueling)
 - (Scooter refueling)
 - (Garden equipment refueling)
 - (Garden equipment use)
Exposure Scenario 1 – Distribution of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)

1.0 Contributing Scenarios

<table>
<thead>
<tr>
<th>Sector of uses SU</th>
<th>SU3 Industrial uses: Uses of substances as such or in preparations at industrial sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process category [PROC]</td>
<td>PROC1, PROC2, PROC2 (Storage), PROC3, PROC3 (Sampling), PROC8a (Maintenance), PROC8b (Bulk), PROC15</td>
</tr>
<tr>
<td>Chemical product category [PC]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Article Categories [AC]</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Environmental release categories [ERC]

ERC4, ERC5, ERC6a, ERC6b, ERC6c, ERC6d, ERC7, ESVOC SpERC 1.1b v.1

2.0 Operational conditions and risk management measures

2.1 Control of worker exposure

Product characteristics

Physical form of product: Liquid with high volatility.

Concentration of substance in product: Covers concentrations up to 100% (≤ 1 % benzene content)

Human factors not influenced by risk management

Potential exposure area: Not defined

Frequency and duration of use

- Exposure duration per day: Covers daily exposures up to 8 hours (unless stated differently).
- Frequency of use (days per year): 300

Other operational conditions affecting worker exposure

Area of use: PROC3, PROC2 (Storage), Outdoor; All other PROC’s, Not defined (default = Indoor)

Characteristics of the surroundings: Not defined

General measures applicable to all activities

Assumes a good basic standard of occupational hygiene is implemented. Assumes activities are at ambient temperature (unless stated differently).

General measures (skin irritants)

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. Wash off any skin contamination immediately. Provide basic employee training to prevent/minimise exposures and to report any skin problems that may develop.

General measures (carcinogens)

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of waste safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance.

Technical conditions of use

PROC1, PROC2, PROC3: Handle substance within a closed system.

PROC8b (Bulk): Ensure material transfers are under containment or extract ventilation. (Efficiency of at least 90 %)

PROC15: Use fume cupboard. (Efficiency of at least 90 %)

Organisational measures

PROC3 (Sampling): Sample via a closed loop or other system to avoid exposure. (Efficiency of at least 95 %)

PROC8a (Maintenance): Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. (Inhalation - efficiency of at least 90 %)

Risk management measures related to human health

Respiratory protection: No special measures are required.

Hand and/or Skin protection: PROC2: Wear suitable gloves tested to EN374. (Efficiency of at
2.2 Control of environmental exposure

Amounts used

- Fraction of EU tonnage used in region: 0.1
- Regional use tonnage (tons/year): 1.0E+06
- Fraction of Regional tonnage used locally: 2.0E-03
- Annual site tonnage (tons/year): 2,000
- Average daily use (kg/day): 20,000

Environment factors not influenced by risk management

- Flow rate of receiving surface water (m³/d): Not defined (default = 18,000)
- Local freshwater dilution factor: 10
- Local marine water dilution factor: 100

Operational conditions

- Emission days (days/year): 100
- Release fraction to air from process (initial release prior to RMM): 1.0E-03
- Release fraction to wastewater from process (initial release prior to RMM): 1.0E-05
- Release fraction to soil from process (initial release prior to RMM): 1.0E-05

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

- Treat air emission to provide a typical removal efficiency of (%): 90
- If there is no discharge to domestic sewage treatment plant, Treat onsite wastewater (prior to receiving water discharge) to provide the required removal efficiency of (%): 0
- If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of >= (%): 0
- Treat soil emission to provide a typical removal efficiency of (%): 0

Common practices vary across sites thus conservative process release estimates used. If discharging to domestic sewage treatment plant, no onsite wastewater treatment required.

Organisational measures to prevent/limit release from site

- Do not apply industrial sludge to natural soils. Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

- Size of municipal sewage system/treatment plant (m³/d): 2000
- Degradation effectiveness (%): 95.1

Conditions and measures related to external treatment of waste for disposal

- External treatment and disposal of waste should comply with applicable local and/or national regulations.

Substance release quantities after risk management measures

- Maximum allowable site tonnage (MSafe) based on release following total wastewater treatment removal (kg/d): 5.3E+06

3. Exposure estimation and reference to its source

3.1 Human exposure prediction

<table>
<thead>
<tr>
<th>Process category [PROC]</th>
<th>Inhalation</th>
<th>Dermal</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhalation exposure (mg/m³)</td>
<td>Risk characterisation (RCR)</td>
<td>Dermal exposure (mg/kg bw/day)</td>
</tr>
<tr>
<td>PROC1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2 (Storage)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC3</td>
<td>0.70</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC3 (Sampling)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8a (Maintenance)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC8b (Bulk)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>
3.2 Environmental exposure prediction

Exposure assessment (method/calculation model) The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the PEC of each group of components in the substance. These are used to estimate the environmental risk for the substance. As the model assumes fractionation before entering the environment, the PEC is not of the substance as manufactured but is a sum of the constituents expected to be present in the environmental compartment.

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>STP</th>
<th>freshwater</th>
<th>marine water</th>
<th>Soil</th>
<th>freshwater sediment</th>
<th>marine sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Environmental Exposure (PEC)</td>
<td>5.0E-03 mg/L</td>
<td>1.9E-03 mg/L</td>
<td>5.0E-05 mg/L</td>
<td>1.6E-05 mg/kg ww</td>
<td>3.1E-03 mg/kg ww</td>
<td>1.4E-04 mg/kg ww</td>
</tr>
<tr>
<td>Risk characterisation ratio (RCR)</td>
<td>1.8E-04</td>
<td>3.8E-03</td>
<td>8.8E-05</td>
<td>6.4E-06</td>
<td>2.5E-03</td>
<td>1.1E-04</td>
</tr>
</tbody>
</table>

Human exposure prediction:

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Exposure (μg/kg⁻¹ day⁻¹)</th>
<th>Risk characterisation ratio (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>0.059</td>
<td>5.9E-04</td>
</tr>
<tr>
<td>Inhalation</td>
<td>0.27</td>
<td>2.9E-04</td>
</tr>
</tbody>
</table>

4.0 Evaluation guidance to downstream user

For scaling see Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.

Available hazard data do not support the need for a DNEL to be established for other health effects. Further details on scaling and control technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html).

Exposure calculated for benzene and assumes that the substance contains 1% benzene. Arithmetic scaling may be possible if the batch contains < 1% benzene

Exposure assessment instrument/tool/method

<table>
<thead>
<tr>
<th>Worker/Environment</th>
<th>Exposure assessment instrument/tool/method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>ECETOC TRA</td>
</tr>
<tr>
<td>Environment</td>
<td>The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.</td>
</tr>
</tbody>
</table>
Exposure Scenario 2 – Formulation and (re)packing of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content)

1.0 Contributing Scenarios

<table>
<thead>
<tr>
<th>Sector of uses SU</th>
<th>SU3 Industrial uses: Uses of substances as such or in preparations at industrial sites SU10 Formulation [mixing] of preparations and/or re-packaging (excluding alloys)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process category [PROC]</td>
<td>PROC1 PROC2 PROC2 (Storage) PROC3 PROC3 (Sampling) PROC8a (Maintenance) PROC8b (Bulk) PROC8b (Drum/batch transfers) PROC15</td>
</tr>
<tr>
<td>Chemical product category [PC]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Article Categories [AC]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Environmental release categories [ERC]</td>
<td>ERC2</td>
</tr>
<tr>
<td>Specific Environmental Release Categories [SPERC]</td>
<td>ESVOC SpERC 2.2.v1</td>
</tr>
</tbody>
</table>

2.0 Operational conditions and risk management measures

2.1 Control of worker exposure

Product characteristics
- Physical form of product: Liquid with high volatility.
- Concentration of substance in product: Covers concentrations up to 100% (≤ 1 % benzene content)

Human factors not influenced by risk management
- Potential exposure area: Not defined
- Frequency and duration of use:
 - Exposure duration per day: Covers daily exposures up to 8 hours (unless stated differently).
 - Frequency of use (days per year): 300

Other operational conditions affecting worker exposure
- Area of use:
 - PROC3 Outdoor
 - All other PROC’s: Not defined (default = Indoor)
- Characteristics of the surroundings: Not defined

General measures applicable to all activities
Assumes a good basic standard of occupational hygiene is implemented. Assumes activities are at ambient temperature (unless stated differently).

General measures (skin irritants)
Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. Wash off any skin contamination immediately. Provide basic employee training to prevent/minimise exposures and to report any skin problems that may develop.

General measures (carcinogens)
Consider technical advances and process upgrades (including automation) for the elimination of releases. Minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance. Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of waste safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance.

Technical conditions of use
- PROC1, PROC2, PROC2 (Storage), PROC3: Handle substance within a closed system.
- PROC3 (Sampling): Sample via a closed loop or other system to avoid exposure. (Efficiency of at least 95 %)
- PROC8b (Bulk), PROC8b (Drum/batch transfers): Ensure material transfers are under containment or extract ventilation. (Efficiency of at least 97 %)
- PROC15: Use fume cupboard. (Efficiency of at least 90 %)

Organisational measures
PROC8a (Maintenance): Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. (Efficiency of at least 90 %)

Risk management measures related to human health

Respiratory protection
No special measures are required.

Hand and/or Skin protection
- PROC2, PROC2 (Storage): Wear suitable gloves tested to EN374. (Efficiency of at least 80 %)
- PROC8a (Maintenance): Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training. (Efficiency of
Eye Protection | No special measures are required.

Other operational conditions affecting worker exposure
Wear suitable coveralls to prevent exposure to the skin. Clear transfer lines prior to de-coupling. Avoid dip sampling.

2.2 Control of environmental exposure

Amounts used

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Fraction of EU tonnage used in region</td>
</tr>
<tr>
<td>2.4E+05</td>
<td>Regional use tonnage (tons/year)</td>
</tr>
<tr>
<td>0.12</td>
<td>Fraction of Regional tonnage used locally (tons/year)</td>
</tr>
<tr>
<td>3.0E+04</td>
<td>Annual site tonnage (tons/year)</td>
</tr>
<tr>
<td>1.0E+05</td>
<td>Average daily use (kg/day)</td>
</tr>
</tbody>
</table>

Flow rate of receiving surface water (m³/d): Not defined (default = 18,000)
Local freshwater dilution factor: 10
Local marine water dilution factor: 100

Emission days (days/year): 300
Release fraction to air from process (initial release prior to RMM): 2.5E-02
Release fraction to wastewater from process (initial release prior to RMM): 1.6E-03
Release fraction to soil from process (initial release prior to RMM): 1.0E-04

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

- Treat air emission to provide a typical removal efficiency of (%): 0
- If there is no discharge to domestic sewage treatment plant, Treat onsite wastewater (prior to receiving water discharge) to provide the required removal efficiency of (%): 94.6
- If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of >= (%): 0
- Treat soil emission to provide a typical removal efficiency of (%): 0

Common practices vary across sites thus conservative process release estimates used. If discharging to domestic sewage treatment plant, no onsite wastewater treatment required.

Organisational measures to prevent/limit release from site
Do not apply industrial sludge to natural soils. Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

- Size of municipal sewage system/treatment plant (m³/d): 2000
- Degradation effectiveness (%): 95.1

Conditions and measures related to external treatment of waste for disposal
External treatment and disposal of waste should comply with applicable local and/or national regulations.

Substance release quantities after risk management measures

- Maximum allowable site tonnage (MSafe) based on release following total wastewater treatment removal (kg/d): 1.1E+05

3. Exposure estimation and reference to its source

3.1 Human exposure prediction

<table>
<thead>
<tr>
<th>Process category [PROC]</th>
<th>Inhalation</th>
<th>Dermal</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inh. exp. (mg/m³)</td>
<td>RCR (mg/kg bw/day)</td>
<td>exp. (mg/kg bw/day)</td>
</tr>
<tr>
<td>PROC1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC3 (Storage)</td>
<td>0.50</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC3 (Sampling)</td>
<td>0.70</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8a (Maintenance)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8b (Bulk)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC8b (Drum/batch transfers)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Exposure assessment (method/calculation model) ECETOC TRA (benzene content)
3.2 Environmental exposure prediction

Exposure assessment (method/calculation model) The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the PEC of each group of components in the substance. These are used to estimate the environmental risk for the substance. As the model assumes fractionation before entering the environment, the PEC is not of the substance as manufactured but is a some of the constituents expected to be present in the environmental compartment.

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>STP</th>
<th>freshwater</th>
<th>marine water</th>
<th>Soil</th>
<th>freshwater sediment</th>
<th>marine sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Environmental Exposure (PEC)</td>
<td>4.0 mg/L</td>
<td>0.4 mg/L</td>
<td>0.04 mg/L</td>
<td>0.002 mg/kg ww</td>
<td>1.1 mg/kg ww</td>
<td>0.1 mg/kg ww</td>
</tr>
<tr>
<td>Risk characterisation ratio (RCR)</td>
<td>0.14</td>
<td>0.7</td>
<td>0.07</td>
<td>0.005</td>
<td>0.9</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Human exposure prediction:

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Exposure (μg/kg day⁻¹)</th>
<th>Risk characterisation ratio (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>Inhalation</td>
<td>170</td>
<td>0.18</td>
</tr>
</tbody>
</table>

4.0 Evaluation guidance to downstream user

For scaling see

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels. Available hazard data do not support the need for a DNEL to be established for other health effects. Further details on scaling and control technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html). Exposure calculated for benzene and assumes that the substance contains 1% benzene. Arithmetic scaling may be possible if the batch contains < 1% benzene.

Exposure assessment instrument/tool/method

Worker | ECETOC TRA

Environment | The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.
Exposure Scenario 3 – Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Industrial

1.0 Contributing Scenarios

<table>
<thead>
<tr>
<th>Sector of uses SU</th>
<th>SU3 Industrial uses: Uses of substances as such or in preparations at industrial sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process category [PROC]</td>
<td>PROC1, PROC2, PROC2 (Storage), PROC3, PROC8a (Maintenance), PROC8b (Bulk), PROC8b (Drum/batch transfers), PROC8b (refuelling), PROC8b (refuelling aircraft), PROC16, PROC16 (Additive)</td>
</tr>
</tbody>
</table>

Chemical product category [PC]	Not applicable
Article Categories [AC]	Not applicable
Environmental release categories [ERC]	ERC7
Specific Environmental Release Categories	ESVOC SpERC 7.12a.v1

2.0 Operational conditions and risk management measures

2.1 Control of worker exposure

Product characteristics
- Physical form of product: Liquid with high volatility.
- Concentration of substance in product: Covers concentrations up to 100% (≤ 1 % benzene content)

Human factors not influenced by risk management
- Potential exposure area: Not defined
- Frequency and duration of use: Covers daily exposures up to 8 hours (unless stated differently).
- Frequency of use (days per year): 300

Other operational conditions affecting worker exposure

<table>
<thead>
<tr>
<th>Area of use</th>
<th>PROC3</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics of the surroundings</td>
<td>Not defined</td>
<td>Not defined (default = Indoor)</td>
</tr>
</tbody>
</table>

General measures applicable to all activities
Assumes a good basic standard of occupational hygiene is implemented. Assumes activities are at ambient temperature (unless stated differently).

General measures (skin irritants)
Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. Wash off any skin contamination immediately. Provide basic employee training to prevent/minimise exposures and to report any skin problems that may develop.

General measures (carcinogens)
Consider technical advances and process upgrades (including automation) for the elimination of releases. Minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance. Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of waste safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance.

Technical conditions of use

| PROC1, PROC2, PROC2 (Storage), PROC3, PROC16, PROC16 (Additive) | Handle substance within a closed system. |
| PROC8b (Bulk), PROC8b (Drum/batch transfers), PROC8b (refuelling), PROC8b (refuelling aircraft) | Ensure material transfers are under containment or extract ventilation. (Efficiency of at least 90 %) |

Organisational measures

| PROC8a (Maintenance) | Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. (Efficiency of at least 86 %) |

Risk management measures related to human health

Respiratory protection
No special measures are required.

Hand and/or Skin protection
| PROC2 | Wear suitable gloves tested to EN374. (Efficiency of at least 80 %) |
Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training. (Efficiency of at least 90 %)

Other operational conditions affecting worker exposure

Wear suitable coveralls to prevent exposure to the skin. Clear transfer lines prior to de-coupling. Avoid dip sampling.

2.2 Control of environmental exposure

Amounts used

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of EU tonnage used in region:</td>
<td>0.1</td>
</tr>
<tr>
<td>Regional use tonnage (tons/year):</td>
<td>1.7E+05</td>
</tr>
<tr>
<td>Fraction of Regional tonnage used locally:</td>
<td>1</td>
</tr>
<tr>
<td>Annual site tonnage (tons/year):</td>
<td>1.7E+05</td>
</tr>
<tr>
<td>Average daily use (kg/day):</td>
<td>5.7E+05</td>
</tr>
</tbody>
</table>

Environment factors not influenced by risk management

- Flow rate of receiving surface water (m³/d): Not defined (default = 18,000)
- Local freshwater dilution factor: 10
- Local marine water dilution factor: 100

Operational conditions

- Emission days (days/year): 300
- Release fraction to air from process (initial release prior to RMM): 5.00E-02
- Release fraction to wastewater from process (initial release prior to RMM): 1.0E-05
- Release fraction to soil from process (initial release prior to RMM): 0

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

- Treat air emission to provide a typical removal efficiency of (%): 95.0
- If there is no discharge to domestic sewage treatment plant, Treat onsite wastewater (prior to receiving water discharge) to provide the required removal efficiency of (%): 0
- If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of >= (%): 0
- Treat soil emission to provide a typical removal efficiency of (%): 0

Common practices vary across sites thus conservative process release estimates used. If discharging to domestic sewage treatment plant, no onsite wastewater treatment required.

Organisational measures to prevent/limit release from site

Do not apply industrial sludge to natural soils. Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

- Size of municipal sewage system/treatment plant (m³/d): 2000
- Degradation effectiveness (%): 95.1

Conditions and measures related to external treatment of waste for disposal

External treatment and disposal of waste should comply with applicable local and/or national regulations.

Substance release quantities after risk management measures

Maximum allowable site tonnage (MSafe) based on release following total wastewater treatment removal (kg/d): 5.40E+06

3. Exposure estimation and reference to its source

3.1 Human exposure prediction

<table>
<thead>
<tr>
<th>Process category [PROC]</th>
<th>Inhalation</th>
<th>Dermal</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhalation exposure (mg/m³)</td>
<td>Risk characterisation ratio (RCR)</td>
<td>dermal exposure (mg/kg bw/day)</td>
</tr>
<tr>
<td>PROC1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2 (Storage)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC3</td>
<td>0.70</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8a (Maintenance)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC8b (Bulk)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>PROC8b (Drum/batch transfers)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>
3.2 Environmental exposure prediction

Exposure assessment (method/calculation model) The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the PEC of each group of components in the substance. These are used to estimate the environmental risk for the substance. As the model assumes fractionation before entering the environment, the PEC is not of the substance as manufactured but is a some of the constituents expected to be present in the environmental compartment.

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>STP</th>
<th>freshwater</th>
<th>marine water</th>
<th>Soil</th>
<th>freshwater sediment</th>
<th>marine sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Environmental Exposure (PEC)</td>
<td>0.14 mg/L</td>
<td>0.014 mg/L</td>
<td>0.0014 mg/L</td>
<td>0.001 mg/kg ww</td>
<td>0.038 mg/kg ww</td>
<td>0.0038 mg/kg ww</td>
</tr>
<tr>
<td>Risk characterisation ratio (RCR)</td>
<td>0.005</td>
<td>0.02</td>
<td>0.002</td>
<td>0.003</td>
<td>0.03</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Human exposure prediction:

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Exposure (μg/kg day⁻¹)</th>
<th>Risk characterisation ratio (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>0.42</td>
<td>0.004</td>
</tr>
<tr>
<td>Inhalation</td>
<td>92.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

4.0 Evaluation guidance to downstream user

For scaling see

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.

Available hazard data do not support the need for a DNEL to be established for other health effects.

Further details on scaling and control technologies are provided in SpERc factsheet (http://cefic.org/en/reach-for-industries-libraries.html).

Exposure calculated for benzene and assumes that the substance contains 1 % benzene. Arithmetic scaling may be possible if the batch contains < 1 % benzene

Exposure assessment instrument/tool/method

<table>
<thead>
<tr>
<th>Worker</th>
<th>ECETOC TRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.</td>
</tr>
</tbody>
</table>
Exposure Scenario 4 – Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Professional

1.0 Contributing Scenarios

<table>
<thead>
<tr>
<th>Sector of uses SU</th>
<th>SU22 Professional uses: Public domain (administration, education, entertainment, services, craftsmen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process category [PROC]</td>
<td>PROC1, PROC2, PROC2 (Storage), PROC3, PROC8a (Maintenance), PROC8b (Bulk), PROC8b (Drum/batch transfers), PROC8b (refuelling), PROC16</td>
</tr>
</tbody>
</table>

2.0 Operational conditions and risk management measures

2.1 Control of worker exposure

Product characteristics
- Physical form of product: Liquid with high volatility.
- Concentration of substance in product: Covers concentrations up to 100% (≤ 1 % benzene content)

Human factors not influenced by risk management
- Potential exposure area: Not defined
- Frequency and duration of use:
 - Exposure duration per day: Covers daily exposures up to 8 hours (unless stated differently).
 - Frequency of use (days per year): 300

Other operational conditions affecting worker exposure
- Area of use: PROC3 Outdoor, All other PROC’s Not defined (default = Indoor)
- Characteristics of the surroundings: Not defined

General measures applicable to all activities
- Assumes a good basic standard of occupational hygiene is implemented. Assumes activities are at ambient temperature (unless stated differently).

General measures (skin irritants)
- Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. Wash off any skin contamination immediately. Provide basic employee training to prevent/minimise exposures and to report any skin problems that may develop.

General measures (carcinogens)
- Consider technical advances and process upgrades (including automation) for the elimination of releases. Minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance. Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of waste safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance.

Technical conditions of use
- PROC1, PROC2, PROC2 (Storage), PROC3, PROC16: Handle substance within a closed system.
- PROC2 (Storage): Provide a good standard of general ventilation. Natural ventilation is from doors, windows etc. Controlled ventilation means air is supplied or removed by a powered fan. (Efficiency of at least 30 %)
- PROC8b (Bulk), PROC8b (Drum/batch transfers), PROC8b (refuelling): Ensure material transfers are under containment or extract ventilation. (Efficiency of at least 90 %)

Organisational measures
- PROC8a (Maintenance): Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. (Efficiency of at least 83 %)

Risk management measures related to human health
- Respiratory protection: No special measures are required.
Hand and/or Skin protection

PROC2
- Wear suitable gloves tested to EN374. (Efficiency of at least 80%)

PROC8a (Maintenance)
- Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training. (Efficiency of at least 98%)

Eye Protection
- No special measures are required.

Other operational conditions affecting worker exposure

- Wear suitable coveralls to prevent exposure to the skin. Clear transfer lines prior to de-coupling. Avoid dip sampling.

2.2 Control of environmental exposure

Amounts used

- Fraction of EU tonnage used in region: 0.1
- Regional use tonnage (tons/year): 3.7E+03
- Fraction of Regional tonnage used locally: (tons/year) 5.0E-04
- Annual site tonnage (tons/year): 1.8
- Average daily use (kg/day): 5.0

Environment factors not influenced by risk management

- Flow rate of receiving surface water (m³/d): Not defined (default = 18,000)
- Local freshwater dilution factor: 10
- Local marine water dilution factor: 100

Operational conditions

- Emission days (days/year): 365
- Release fraction to air from process (initial release prior to RMM): 1.0E-02
- Release fraction to wastewater from process (initial release prior to RMM): 1.0E-05
- Release fraction to soil from process (initial release prior to RMM): 1.0E-05

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

- Treat air emission to provide a typical removal efficiency of (%): Not applicable
- If there is no discharge to domestic sewage treatment plant, Treat onsite wastewater (prior to receiving water discharge) to provide the required removal efficiency of (%): 0
- If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of >= (%): 0
- Treat soil emission to provide a typical removal efficiency of (%): 0

Organisational measures to prevent/limit release from site

- Do not apply industrial sludge to natural soils. Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

- Size of municipal sewage system/treatment plant (m³/d): 2000
- Degradation effectiveness (%): 95.1

Conditions and measures related to external treatment of waste for disposal

- External treatment and disposal of waste should comply with applicable local and/or national regulations.

Substance release quantities after risk management measures

- Maximum allowable site tonnage (MSafe) based on release following total wastewater treatment removal (kg/d): 1716

3. Exposure estimation and reference to its source

3.1 Human exposure prediction

<table>
<thead>
<tr>
<th>Process category [PROC]</th>
<th>Inhalation</th>
<th>Dermal</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inhalation exposure (mg/m³)</td>
<td>Risk characterisation ratio (RCR)</td>
<td>dermal exposure (mg/kg bw/day)</td>
</tr>
<tr>
<td>PROC1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC2 (Storage)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>PROC3</td>
<td>0.70</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8a (Maintenance)</td>
<td>0.85</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td>PROC8b (Bulk)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>PROC8b</td>
<td>0.25</td>
<td>0.25</td>
<td>0.07</td>
</tr>
</tbody>
</table>
3.2 Environmental exposure prediction

Exposure assessment (method/calculation model) The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the PEC of each group of components in the substance. These are used to estimate the environmental risk for the substance. As the model assumes fractionation before entering the environment, the PEC is not of the substance as manufactured but is a some of the constituents expected to be present in the environmental compartment.

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>STP</th>
<th>freshwater</th>
<th>marine water</th>
<th>Soil</th>
<th>freshwater sediment</th>
<th>marine sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Environmental Exposure (PEC)</td>
<td>1.25 mg/L</td>
<td>0.0014 mg/L</td>
<td>5.4 mg/L</td>
<td>1.5E-05 mg/kg ww</td>
<td>0.0017 mg/kg ww</td>
<td>5.7 mg/kg ww</td>
</tr>
<tr>
<td>Risk characterisation ratio (RCR)</td>
<td>4.5E-08</td>
<td>0.003</td>
<td>9.1E-06</td>
<td>5.0E-06</td>
<td>0.0014</td>
<td>4.4E-06</td>
</tr>
</tbody>
</table>

Human exposure prediction:

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Exposure (μg/kg⁻¹ day⁻¹)</th>
<th>Risk characterisation ratio (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>0.054</td>
<td>5.4E-04</td>
</tr>
<tr>
<td>Inhalation</td>
<td>0.22</td>
<td>2.4E-04</td>
</tr>
</tbody>
</table>

4.0 Evaluation guidance to downstream user

For scaling see Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels. Available hazard data do not support the need for a DNEL to be established for other health effects. Further details on scaling and control technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html).

Exposure assessment instrument/tool/method Worker ECETOC TRA

Environment The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.
Exposure Scenario 5 – Use of Naphtha (petroleum), catalytic reformed (0 – 1 % benzene content) as a fuel - Consumer

1.0 Contributing Scenarios

<table>
<thead>
<tr>
<th>Sector of uses SU</th>
<th>SU21 Consumer uses: Private households (= general public = consumers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process category [PROG]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Chemical product category [PC]</td>
<td>PC13 (Automotive refueling) PC13 (Scooter refueling) PC13 (Garden equipment refueling) PC13 (Garden equipment use)</td>
</tr>
<tr>
<td>Article Categories [AC]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Environmental release categories [ERC]</td>
<td>ERC9a ERC9b</td>
</tr>
<tr>
<td>Specific Environmental Release Categories [SERC]</td>
<td>ESVOC SpERC 9.12c.v1</td>
</tr>
</tbody>
</table>

2.0 Operational conditions and risk management measures

2.1 Control of worker exposure

Product characteristics

<table>
<thead>
<tr>
<th>Physical form of product</th>
<th>Liquid with high volatility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of substance in product</td>
<td>Covers concentrations up to 100% (≤ 1 % benzene content)</td>
</tr>
</tbody>
</table>

Human factors not influenced by risk management

<table>
<thead>
<tr>
<th>Potential exposure area (Skin Contact)</th>
<th>PC13 Automotive refueling; Scooter refueling 210 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Garden equipment use; Garden equipment refueling 420 cm²</td>
</tr>
</tbody>
</table>

Frequency and duration of use

<table>
<thead>
<tr>
<th>Exposure duration (hours/Event)</th>
<th>PC13 Automotive refueling; Scooter refueling 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Garden equipment use 0.03</td>
</tr>
<tr>
<td></td>
<td>Garden equipment refueling 2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency of use (days per year)</th>
<th>PC13 Automotive refueling; Scooter refueling 52 (Covers frequency up to: weekly use)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Garden equipment use; Garden equipment refueling 26 (Covers frequency up to: once in two weeks.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amounts used (g/Event)</th>
<th>PC13 Automotive refueling 37500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scooter refueling 3750</td>
</tr>
<tr>
<td></td>
<td>Garden equipment use; Garden equipment refueling 750</td>
</tr>
</tbody>
</table>

Other operational conditions affecting worker exposure

<table>
<thead>
<tr>
<th>Area of use</th>
<th>Not defined</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Characteristics of the surroundings</th>
<th>PC13 Automotive refueling; Scooter refueling; Garden equipment use Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Garden equipment refueling 34 m³</td>
</tr>
</tbody>
</table>

Risk Management Measures

- **Respiratory protection**: No specific measures identified.
- **Hand and/or Skin protection**: No specific measures identified.
- **Eye Protection**: No specific measures identified.

2.2 Control of environmental exposure

<table>
<thead>
<tr>
<th>Amounts used</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of EU tonnage used in region:</td>
<td>0.1</td>
</tr>
<tr>
<td>Regional use tonnage (tons/year):</td>
<td>7.1E+04</td>
</tr>
<tr>
<td>Fraction of Regional tonnage used locally: (tons/year)</td>
<td>5.0E-04</td>
</tr>
<tr>
<td>Annual site tonnage (tons/year):</td>
<td>36</td>
</tr>
<tr>
<td>Average daily use (kg/day):</td>
<td>97</td>
</tr>
</tbody>
</table>

Environment factors not influenced by risk management

- **Flow rate of receiving surface water (m³/d)**: Not defined (default = 18,000)
- **Local freshwater dilution factor**: 10
- **Local marine water dilution factor**: 100

Operational conditions
SAFETY DATA SHEET

Revision: 4.1 Date: 10.06.2019

ACCORDING TO EC-REGULATIONS 1907/2006 (REACH), 1272/2008 (CLP) & 2015/830

Emission days (days/year): 365
Release fraction to air from process (initial release prior to RMM): 1.0E-02
Release fraction to wastewater from process (initial release prior to RMM): 1.0E-05
Release fraction to soil from process (initial release prior to RMM): 1.0E-05

Conditions and measures related to municipal sewage treatment plant
Size of municipal sewage system/treatment plant (m³/d) 2000
Degradation effectiveness (%) 95.1

Conditions and measures related to external treatment of waste for disposal
External treatment and disposal of waste should comply with applicable local and/or national regulations.

Substance release quantities after risk management measures
Maximum allowable site tonnage (MSafe) based on release following total wastewater treatment removal (kg/d): 3.3E+04

3. Exposure estimation and reference to its source
3.1 Human exposure prediction

Exposure assessment (method/calculation model) ECETOC TRA (benzene content)

Yearly Use (Chronic)

<table>
<thead>
<tr>
<th>Chemical product category [PC]</th>
<th>Inhalation</th>
<th>Dermal</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhalation exposure (mg/m³)</td>
<td>Risk characterisation ratio (RCR)</td>
<td>dermal exposure (mg/kg bw/day)</td>
</tr>
<tr>
<td>PC13 (Automotive refueling)</td>
<td>0.002</td>
<td>0.69</td>
<td>0.00</td>
</tr>
<tr>
<td>PC13 (Scooter refueling)</td>
<td>0.001</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>PC13 (Garden equipment use)</td>
<td>0.003</td>
<td>0.87</td>
<td>0.00</td>
</tr>
<tr>
<td>PC13 (Garden equipment refueling)</td>
<td>0.001</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

3.2 Environmental exposure prediction

Exposure assessment (method/calculation model) The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.

Naphtha (petroleum), catalytic reformed is a hydrocarbon UVCB. The hydrocarbon block method is used in PETRORISK to calculate the PEC of each group of components in the substance. These are used to estimate the environmental risk for the substance As the model assumes fractionation before entering the environment, the PEC is not of the substance as manufactured but is a some of the constituents expected to be present in the environmental compartment.

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>STP</th>
<th>freshwater</th>
<th>marine water</th>
<th>Soil</th>
<th>freshwater sediment</th>
<th>marine sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Environmental Exposure (PEC)</td>
<td>2.4E-05 mg/L</td>
<td>0.0014 mg/L</td>
<td>5.6E-06 mg/L</td>
<td>1.6E-05 mg/kg ww</td>
<td>0.0017 mg/kg ww</td>
<td>6.3E-06 mg/kg ww</td>
</tr>
<tr>
<td>Risk characterisation ratio (RCR)</td>
<td>8.8E-07</td>
<td>0.003</td>
<td>9.5E-06</td>
<td>7.2E-06</td>
<td>0.0014</td>
<td>4.9E-06</td>
</tr>
</tbody>
</table>

Human exposure prediction:

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Exposure (μg/kg⁻¹ day⁻¹)</th>
<th>Risk characterisation ratio (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>0.054</td>
<td>5.4E-04</td>
</tr>
<tr>
<td>Inhalation</td>
<td>0.22</td>
<td>2.4E-04</td>
</tr>
</tbody>
</table>

4.0 Evaluation guidance to downstream user

For scaling see Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed at at least equivalent levels.
Available hazard data do not support the need for a DNEL to be established for other health effects.
Further details on scaling and control technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html).
Exposure calculated for benzene and assumes that the substance contains 1 % benzene. Arithmetic scaling

Page: 25 of 26
<table>
<thead>
<tr>
<th>Exposure assessment instrument/tool/method</th>
<th>Consumer</th>
<th>ECETOC T&RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td></td>
<td>The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk model.</td>
</tr>
</tbody>
</table>